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Abstract 
Deep learning is the upcoming field of research as it allows 
us to train deeper networks. The advantage of deeper 
networks is that it improves the classification efficiency, 
which is because as the number of layers increase, the 
network learns more about the underlying structure of the 
image, thus providing more informative feature maps. We 
follow research of Qianli Liao, Tomaso Poggio[1] who claim 
that a shallow RNN is exactly equivalent to a very deep 
ResNet with weight sharing among the layers. Our approach 
towards this project is to work towards Recurrent ResNets so 
that we can reproduce the same results as a deep ResNet by 
using a shallow RNN.  

1. Introduction 
Convolutional Neural Networks (CNNs) are 

inspired by biological networks that exist inside the brain. 
Just like how neurons are interconnected in subregions of the 
visual cortex, neurons inside a CNN are inter-connected to 
the subsequent hidden layer. These networks have multiple 
layers, starting from filters which are used for convolution 
with the input image. These filters weights are used to 
highlight features of the image, and they are shared within 
the network, resulting in reduction of the time required to 
learn these parameters. Operations like pooling ensure 
translational invariance in the image. As the number of 
layers are incremented, the network gains more information 
about the system, and it produces higher or more defined 
features. Use of these high-level features has been on a rise 
for the past few decades as they have wide applications in 
the field of classification. Also, CNNs are preferred over 
fully connected networks as they are relatively easier to 
train. It has been proved that efficiency of these networks 
can be increased by adding more layers to the network. But 
an underlying limitation is that as the hidden layers are 
increased, the vanishing gradient problems arises and the 
deep network poses bigger challenges when it comes to 
training.  

 
Recently, Microsoft proposed a solution to this 

problem. They came up with a model called Residual 
Networks or ResNets which are essentially just a 
modification to CNNs. In ResNets, input from a layer is fed 
to one of subsequent layers so that the value of the gradient 
is not lost while traversing through deep networks. This also 
ensures that another layer is added only if it is more 

informative for the system. Thus, as ResNets overcome the 
main problem posed by CNNs, they can be used to train 
ultra-deep neural networks. 
 

In the recent years, the state-of-the-art performance 
achieved by residual networks for classifying various data 
sets has resulted from ultra-deep architectures which have 
been shown to perform better than shallower networks 
consistently [1]. In [2] ,Qianli Liao and Poggio demonstrate 
that the basis of the good performance of such ultra-deep 
architectures is their efficiency in performing recurrent 
computations. It’s shown that a deep residual network is 
equivalent to a shallow RNN. Further they demonstrate that 
an RNN with weight sharing (and therefore, less parameters) 
can yield performance similar to its corresponding ultra-deep 
residual network. 
 

In this project, we first describe the research that 
has been done related to this field. We then talk about the 
approach towards our aim and the dataset and tools that we 
used for the implementation. This is followed by the 
architecture that we implemented and finally, we have stated 
the results that we observed.  

 
Fig 1. Basic ResNet Building Block   

2. Related Work 

Compared to normal CNNs, ResNets make the 
learning process faster by providing gradients a clearer path 
to back propagate to early layers of the network, thus 
avoiding the vanishing gradient problem or dead neurons. 
Zhang and Rendescribe a srutcute of ResNets with layers 



 

ranging from 18 to 152 in [2]. They show that ResNets can 
be viewed as multiple basic blocks which are sequentially 
connected to each other apart from having shortcut 
connections parallel to each basic block that contribute to 
their outputs. Sam Gross and Michael Wilber[3] compare 
different basic blocks for the shortcut connection shown in 
Figure [1]. It demonstrates how adding a parametered layer 
after addition can reduce advantages of ResNets because 
they leave no fast way for gradients to back propagate 
anymore. Adding an un-parametered layer like ReLu 
however, does not present any major advantage or 
disadvantage. 

3. Approach 

To implement a recurrent residual network it is 
imperative that we start from the basics for data set 
classification. Hence, after implementing a convolutional 
neural network without residual connections, we modified 
the structure to a residual network architecture by varying 
the locations of the various blocks in a convolutional neural 
network such as ReLU (rectified linear unit), batch 
normalisation etc. The input from previous convolution layer 
is fed to the subsequent convolution layer, and it is denoted 
by  𝐹(𝑥) 	+ 	𝑥	operation. After analyzing the optimum 
network architecture for the residual network, we 
implemented recurrent models for residual networks. The 
equivalence of ResNet and their corresponding RecNet for 
can be seen in Figure 2.  

 

 

Fig 2. Recurrent form of networks 

 
3.1. Network Architecture 
    

Now we’ll discribe the network architecture 
implemented for going from CNNs to ResNets, followed by 
the architecture of the final RecNet. 
 
3.11 Residual Network from CNNs 
    

A convolutional neural network was constructed to 
exploit the spatial relation between the different dimensions 
in the picture. For this purpose, we made use of MNIST 
dataset which consists of numbers ranges 0-9. 10,000 images 
were taken as training data and 1,000 images were taken as 
testing data. The input images were all of the dimension 
28x28. For the convolutional layer, 20 filters of size 5x5 
were chosen with a stride of 2.  
       

Next, a pooling layer is used to condense the 
feature maps found in the output of the convolutional layer. 
This gives the output obtained from the convolutional layer 
in a  dense form before feeding to the next convoluted layer. 
After the pooling layer, another set of convolutional and 
pooling layers were used to get higher level features. Then, 
an activation function, namely ReLU(Rectified Linear Unit) 
layer is used which which approximates to the analytic 
function, 
 

𝑓(𝑥) 	= 	𝑙𝑛(1 + 𝑒-) 
 
 

Finally, a fully connected layer is used to classify 
the output using a softmax regression layer to classify 
outputs into 10 labels using one hot encoded format.     

3.2 Recurrent Network Architecture 

The 18-layer Resnet model introduced in [3] is a 
good start to understand the Resnet model. It uses different 
weights and not shared weights as the number of feature and 
spatial sizes change for every section of layers.  A shortcut 
connection is added to each pair of 3x3 filters. 

 
The results discussed in  [4] suggest that this model 

is prone to overfit. Also, an 18 layer residual network is 
computationally intensive to train on CPUs. 

 
 4. Dataset and Implementation Tools 
 

Here we describe the dataset and framework we 
used for training and network implementation. 

 
 



 

 
Figure 3 18-layers ResNet model 

4.1 Dataset  
 
The CIFAR-10 dataset consists of 60000 32x32 

colour images in 10 classes, with 6000 images per class. 
There are 50000 training images and 10000 test images.  The 
dataset is divided into five training batches and one test 
batch, each with 10000 images. The test batch contains 
exactly 1000 randomly-selected images from each class. The 
training batches contain the remaining images in random 
order, but some training batches may contain more images 
from one class than another. Between them, the training 
batches contain exactly 5000 images from each class. It 
consists of classes like airplane, bird, boats, automobile, 
train etc. 
 

 

              Fig 4. Sample images from CIFAR-10 dataset 

4.2 Keras 

Keras is an open source, high-level neural networks 
library, written in Python. It is capable of running on top of 
either TensorFlow or Theano[5].  
 

Keras enables writing a deep learning library that is 
modular. A model in Keras code can be seen as a sequence 
of independent, configurable models which can be plugged 
together. For example, cost functions, regularization are all 
standalone modules. These blocks can be plugged together 
with minimal restrictions which enables easy extensibility of 
the library.  
 

Keras supports convolutional networks, recurrent 
networks as well as a combination of the two. It has support 
for running on both CPU and GPU. In this project a xyz 
platform was used to implement and train different ResNet 
and ConvNet models as well as the Recurrent ResNet model. 



 

 
4.3 Tensorflow 
 
 Tensorflow[6] works as a backend for Keras 
library. It aids in numerical computation using data flow 
graphs and the edges of the graph are represented in the form 
of tensors. 

5. Experiments and Observation 

Recurrency was incorporated in the model 
described in 5.1 by feeding flattened input to an RNN block. 
The architecture of the resultant RecNet was inspired  from 
the figure shown in Figure 3. We unrolled our recurrent 
model seven times to add depth to the network. 

 
As described in the picture, blocks coloured in blue 

are common to both shallow residual network and shallow 
recurrent network architecture. The depth of the residual 
network is just 1. Thus, it fails to converge and gives high 
misclassification error in both test and training data sets 
(approx 54%).  

 
For the recurrent network implementation, a simple 

RNN block is added 7 times. This is equivalent to having 
seven residual network blocks sequentially lined after the 
first one. The testing error did improve and approximately 
resulted in 45% misclassification error. However, we 
seemed to realise that due to the shallow nature of the 
architecture, the training data seemed to be overfitted. 
Shown in figures 5 & 6 are misclassification errors vs 
number of epochs. Both architectures were trained for over 
30 epochs. 

 

 
 
Fig 5. Misclassification error vs Epochs plot for deep ResNet 

architecture 

 
Fig 6. Misclassification error vs Epochs plot for RecNet 

architecture  

Fig 7. Implemented ResNet and RecNet architecture. 



 

 
7. Future Work 
 
   Low accuracy achieved by our ResNet model suggests that 
we need to incorporate more deep blocks for our system to 
train better.  For RecNets we need to modify our system 
architecture for better simulation results. Changes can be 
made with respect to how we train our models or the 
activation functions in order to make RecNets replicate 
ResNets successfully. Some of the potential techniques can 
be removing the dropout layer or changing the number of 
times the Recurrent layer is unrolled. 
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