

Recurrent Networks in Residual Networks

Poojita Thukral Prachee Sharma Prithvishankar Srinivasan
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
Forbes Avenue Forbes Avenue Forbes Avenue
pthukral@andrew.cmu.edu prachees@andrew.cmu.edu prithvis@andrew.cmu.edu

Abstract
Deep learning is the upcoming field of research as it allows
us to train deeper networks. The advantage of deeper
networks is that it improves the classification efficiency,
which is because as the number of layers increase, the
network learns more about the underlying structure of the
image, thus providing more informative feature maps. We
follow research of Qianli Liao, Tomaso Poggio[1] who claim
that a shallow RNN is exactly equivalent to a very deep
ResNet with weight sharing among the layers. Our approach
towards this project is to work towards Recurrent ResNets so
that we can reproduce the same results as a deep ResNet by
using a shallow RNN.

1. Introduction
Convolutional Neural Networks (CNNs) are

inspired by biological networks that exist inside the brain.
Just like how neurons are interconnected in subregions of the
visual cortex, neurons inside a CNN are inter-connected to
the subsequent hidden layer. These networks have multiple
layers, starting from filters which are used for convolution
with the input image. These filters weights are used to
highlight features of the image, and they are shared within
the network, resulting in reduction of the time required to
learn these parameters. Operations like pooling ensure
translational invariance in the image. As the number of
layers are incremented, the network gains more information
about the system, and it produces higher or more defined
features. Use of these high-level features has been on a rise
for the past few decades as they have wide applications in
the field of classification. Also, CNNs are preferred over
fully connected networks as they are relatively easier to
train. It has been proved that efficiency of these networks
can be increased by adding more layers to the network. But
an underlying limitation is that as the hidden layers are
increased, the vanishing gradient problems arises and the
deep network poses bigger challenges when it comes to
training.

Recently, Microsoft proposed a solution to this

problem. They came up with a model called Residual
Networks or ResNets which are essentially just a
modification to CNNs. In ResNets, input from a layer is fed
to one of subsequent layers so that the value of the gradient
is not lost while traversing through deep networks. This also
ensures that another layer is added only if it is more

informative for the system. Thus, as ResNets overcome the
main problem posed by CNNs, they can be used to train
ultra-deep neural networks.

In the recent years, the state-of-the-art performance
achieved by residual networks for classifying various data
sets has resulted from ultra-deep architectures which have
been shown to perform better than shallower networks
consistently [1]. In [2] ,Qianli Liao and Poggio demonstrate
that the basis of the good performance of such ultra-deep
architectures is their efficiency in performing recurrent
computations. It’s shown that a deep residual network is
equivalent to a shallow RNN. Further they demonstrate that
an RNN with weight sharing (and therefore, less parameters)
can yield performance similar to its corresponding ultra-deep
residual network.

In this project, we first describe the research that
has been done related to this field. We then talk about the
approach towards our aim and the dataset and tools that we
used for the implementation. This is followed by the
architecture that we implemented and finally, we have stated
the results that we observed.

Fig 1. Basic ResNet Building Block

2. Related Work

Compared to normal CNNs, ResNets make the
learning process faster by providing gradients a clearer path
to back propagate to early layers of the network, thus
avoiding the vanishing gradient problem or dead neurons.
Zhang and Rendescribe a srutcute of ResNets with layers

ranging from 18 to 152 in [2]. They show that ResNets can
be viewed as multiple basic blocks which are sequentially
connected to each other apart from having shortcut
connections parallel to each basic block that contribute to
their outputs. Sam Gross and Michael Wilber[3] compare
different basic blocks for the shortcut connection shown in
Figure [1]. It demonstrates how adding a parametered layer
after addition can reduce advantages of ResNets because
they leave no fast way for gradients to back propagate
anymore. Adding an un-parametered layer like ReLu
however, does not present any major advantage or
disadvantage.

3. Approach

To implement a recurrent residual network it is
imperative that we start from the basics for data set
classification. Hence, after implementing a convolutional
neural network without residual connections, we modified
the structure to a residual network architecture by varying
the locations of the various blocks in a convolutional neural
network such as ReLU (rectified linear unit), batch
normalisation etc. The input from previous convolution layer
is fed to the subsequent convolution layer, and it is denoted
by 𝐹(𝑥) 	+ 	𝑥	operation. After analyzing the optimum
network architecture for the residual network, we
implemented recurrent models for residual networks. The
equivalence of ResNet and their corresponding RecNet for
can be seen in Figure 2.

Fig 2. Recurrent form of networks

3.1. Network Architecture

Now we’ll discribe the network architecture
implemented for going from CNNs to ResNets, followed by
the architecture of the final RecNet.

3.11 Residual Network from CNNs

A convolutional neural network was constructed to
exploit the spatial relation between the different dimensions
in the picture. For this purpose, we made use of MNIST
dataset which consists of numbers ranges 0-9. 10,000 images
were taken as training data and 1,000 images were taken as
testing data. The input images were all of the dimension
28x28. For the convolutional layer, 20 filters of size 5x5
were chosen with a stride of 2.

Next, a pooling layer is used to condense the
feature maps found in the output of the convolutional layer.
This gives the output obtained from the convolutional layer
in a dense form before feeding to the next convoluted layer.
After the pooling layer, another set of convolutional and
pooling layers were used to get higher level features. Then,
an activation function, namely ReLU(Rectified Linear Unit)
layer is used which which approximates to the analytic
function,

𝑓(𝑥) 	= 	𝑙𝑛(1 + 𝑒-)

Finally, a fully connected layer is used to classify
the output using a softmax regression layer to classify
outputs into 10 labels using one hot encoded format.

3.2 Recurrent Network Architecture

The 18-layer Resnet model introduced in [3] is a
good start to understand the Resnet model. It uses different
weights and not shared weights as the number of feature and
spatial sizes change for every section of layers. A shortcut
connection is added to each pair of 3x3 filters.

The results discussed in [4] suggest that this model

is prone to overfit. Also, an 18 layer residual network is
computationally intensive to train on CPUs.

 4. Dataset and Implementation Tools

Here we describe the dataset and framework we
used for training and network implementation.

Figure 3 18-layers ResNet model

4.1 Dataset

The CIFAR-10 dataset consists of 60000 32x32

colour images in 10 classes, with 6000 images per class.
There are 50000 training images and 10000 test images. The
dataset is divided into five training batches and one test
batch, each with 10000 images. The test batch contains
exactly 1000 randomly-selected images from each class. The
training batches contain the remaining images in random
order, but some training batches may contain more images
from one class than another. Between them, the training
batches contain exactly 5000 images from each class. It
consists of classes like airplane, bird, boats, automobile,
train etc.

 Fig 4. Sample images from CIFAR-10 dataset

4.2 Keras

Keras is an open source, high-level neural networks
library, written in Python. It is capable of running on top of
either TensorFlow or Theano[5].

Keras enables writing a deep learning library that is
modular. A model in Keras code can be seen as a sequence
of independent, configurable models which can be plugged
together. For example, cost functions, regularization are all
standalone modules. These blocks can be plugged together
with minimal restrictions which enables easy extensibility of
the library.

Keras supports convolutional networks, recurrent
networks as well as a combination of the two. It has support
for running on both CPU and GPU. In this project a xyz
platform was used to implement and train different ResNet
and ConvNet models as well as the Recurrent ResNet model.

4.3 Tensorflow

 Tensorflow[6] works as a backend for Keras
library. It aids in numerical computation using data flow
graphs and the edges of the graph are represented in the form
of tensors.

5. Experiments and Observation

Recurrency was incorporated in the model
described in 5.1 by feeding flattened input to an RNN block.
The architecture of the resultant RecNet was inspired from
the figure shown in Figure 3. We unrolled our recurrent
model seven times to add depth to the network.

As described in the picture, blocks coloured in blue

are common to both shallow residual network and shallow
recurrent network architecture. The depth of the residual
network is just 1. Thus, it fails to converge and gives high
misclassification error in both test and training data sets
(approx 54%).

For the recurrent network implementation, a simple

RNN block is added 7 times. This is equivalent to having
seven residual network blocks sequentially lined after the
first one. The testing error did improve and approximately
resulted in 45% misclassification error. However, we
seemed to realise that due to the shallow nature of the
architecture, the training data seemed to be overfitted.
Shown in figures 5 & 6 are misclassification errors vs
number of epochs. Both architectures were trained for over
30 epochs.

Fig 5. Misclassification error vs Epochs plot for deep ResNet

architecture

Fig 6. Misclassification error vs Epochs plot for RecNet

architecture

Fig 7. Implemented ResNet and RecNet architecture.

7. Future Work

 Low accuracy achieved by our ResNet model suggests that
we need to incorporate more deep blocks for our system to
train better. For RecNets we need to modify our system
architecture for better simulation results. Changes can be
made with respect to how we train our models or the
activation functions in order to make RecNets replicate
ResNets successfully. Some of the potential techniques can
be removing the dropout layer or changing the number of
times the Recurrent layer is unrolled.

8. References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Identity mappings in deep residual networks. arXiv
preprint arXiv:1603.05027, 2016

[2] Qianli Liao, Tomaso Poggio, Bridging the Gaps
Between Residual Learning, Recurrent Neural Networks
and Visual Cortex, Center for Brains, Minds and
Machines, McGovern Institute, MIT,CBMM Memo No.
047

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition.1512.03385, 2015.

[4] http://cs231n.stanford.edu/reports2016/264_Report.pdf
[5] https://keras.io/
[6] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[7] http://torch.ch/blog/2016/02/04/ResNets.html, Sam
Gross and Michael Wilber

[8] LeCun, Yann; Corinna Cortes; Christopher J.C. Burges.
"MNIST handwritten digit database, Yann LeCun,
Corinna Cortes and Chris Burges". Retrieved 13
November 2016.

[9] Learning Multiple Layers of Features from Tiny
Images, Alex Krizhevsky, 2009.

[10] David Eigen, Jason Rolfe, Rob Fergus, and Yann
LeCun. Understanding deep architectures using a
recursive convolutional network. arXiv preprint
arXiv:1312.1847, 2013.

