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OVERVIEW



The prospect of classifying hyperspectral images is exciting as they are used in a

variety of applications from mining to farming. Hyperspectral images often contain

reflectance information from numerous wavelengths. Thus, efficient decomposition

methods are required to compress the data and make it further suitable for other

processes such as classification and pattern recognition. In this project, a tensor is

subject to two different kinds of decomposition, namely PCA and MPCA. The

differences are established and tabulated. Then the Support Vector Machine (SVM) is

used to classify the Hyperspectral image into multiple classes and its accuracy

observed.

INTRODUCTION



• To perform tensor-based multiway classification on Hyperspectral images. Thus;

o To represent Hyperspectral in their natural form as higher order tensors.

o To perform feature extraction using tensorial and non-tensorial methods.

o To train the classifier using the features.

o To automatically categorize all the pixels in the image into multiple classes

using the classifier.

OBJECTIVES



• Hyperspectral images contain a spectrum for each pixel of the image, i.e each

pixel in an image scene is captured at many different wavelengths.

• So, it can be naturally represented as a tensor of higher dimensions.

• Thus, we intend to use tensor-based image processing techniques that operate on

higher dimensional data without performing any spatial rearrangement.

MOTIVATION



• Hyperspectral images provides a densely sampled and almost continuous spectral
response over the given wavelengths.

• They are spectrally over determined, i.e, they provide ample spectral information
to identify and distinguish spectrally unique materials.

• Several materials radiate the incident light in a higher proportion only in a very
narrow spectral range.

• This characteristic of high spectral resolution makes differentiation of various
materials on earth possible.

• The ability of hyperspectral image to capture even minor variations in scene
reflectance imparts tremendous advantages as far as data classification is
concerned.

HYPERSPECTRAL IMAGING



• A tensor is basically a multidimensional or N-way array of data.

TENSORS

• Order of a tensor is defined as the number of
its modes or dimensions.

• In fact tensors are merely a generalisation of
scalars and vectors;

• A matrix (2-Dimensional array) is a second
order tensor.

• A vector (1-Dimensional array) is a first order
tensor. (eg): Electric field in space

• A scalar is a zeroth order tensor. (eg): Mass of
an object

Fig. 1: A 3rd order Tensor
Courtesy: Mathis, Miles, The trouble with 
tensors. Retrieved 8 April 2016. 
http://milesmathis.com/tensor.html



TENSORS	(contd...)
• Large sets of data which have an inherent

multiway character can be naturally
represented using tensors and analyzed.

• For example, Tensors are used in Object
recognition (within computer vision
application) for identifying and classifying
objects in an image or video sequence.

• Fig 2 shows a sequence of images that can
be represented as a third order tensor, where
the 3 dimensions are the spatial row, spatial
column and time.

Fig. 2 : Example of tensor
Courtesy: 
http://www.wikiwand.com/en/M
ultilinear_subspace_learning



• The Hyperspectral image has three dimensions (2 spatial and one spectral), thus
can be naturally represented as a tensor of 3rd order.

HYPERSPECTRAL IMAGE AS A TENSOR

Fig. 3: Hyperspectral image
Courtesy: Prof. Tamás János, Fórián Tünde (2008), Geoinformatics

http://www.tankonyvtar.hu/en/tartalom/tamop425/0032_terinformatika/ch04s04.html 



FEATURE EXTRACTION
• Feature extraction a type of dimensionality reduction that efficiently represents

interesting parts of an image as a compact feature vector. This approach is
useful when image sizes are large and a reduced feature representation is
required to quickly complete tasks such as image matching and retrieval.

• Feature detection, feature extraction, and matching are often combined to
solve common computer vision problems such as object detection
and recognition, content-based image retrieval, face detection and recognition,
and texture classification.

• It starts from an initial set of measured data and builds derived values
(features) intended to be informative and non-redundant, facilitating the
subsequent learning and training of the classifier.



• We have performed non-tensorial and tensor – based feature extraction on the

input Hyperspectral image.

• The following were used to form the feature vector in the non-tensorial method;

o Spectral Magnitude.

o Spectral First Derivative

o Principal Component Analysis

• The tensor – based feature extraction was performed using Multilinear Principal

Component Analysis (MPCA)

FEATURE EXTRACTION



SPECTRAL SIGNATURE

•Different surface types reflect radiation
differently in various wavelength
channels.
•The difference in the reflectance or
emittance characteristics of the surface
with respect to wavelengths is called as
spectral signature.
•The spectral signatures of 3 classes
(corn-no till, Grass/Trees, woods) are
shown in Fig. 4. Fig. 4: Spectral Signature



SPECTRAL FIRST DERIVATIVE

•Spectral derivatives are used for
discriminating different classes.
•The first spectral derivative is given
by;

Where, shows the jth derivative
•The spectral first derivatives of 3
classes (corn-no till, Grass/Trees,
woods) are shown in Fig. 5.

Fig. 5: Spectral First Derivative



PRINCIPAL COMPONENT ANALYSIS
• Principal Component Analysis (PCA) is

commonly used for dimensionality
reduction by performing orthogonal
transformation on a set of correlated
variables to transform into a set of
uncorrelated linear variables.

• This transformation is defined in such a
way that the first principal component has
the largest possible variance (that is,
accounts for as much of the variability in
the data as possible), and each succeeding
component in turn has the highest variance
possible under the constraint that it
is orthogonal to the preceding components.

Fig. 6: PCA Transformation.
Scholz, M.(2006), Principal Component 
Analysis(PCA). Retrieved 2 February, 2016 
http://www.nlpca.org/pca_principal_component_
analysis.html.



MULTILINEAR PRINCIPAL COMPONENT 
ANALYSIS

• MPCA is a multilinear extension of PCA.

• The major difference is that PCA needs to
reshape a multidimensional object into
a vector, while MPCA operates directly on
multidimensional objects through mode-
wise processing.

• For example, for 100x100 images, PCA
operates on vectors of 10000x1 while
MPCA operates on vectors of 100x1 in
two modes. Thus, MPCA is more efficient
and better conditioned in practice.

Fig. 7: Tensor Decomposition



MPCA ALGORITHM
INPUT: A tensor of N-dimensions                       

{𝜒# 	∈ 	ℝ'(×'*×⋯×',,𝑚 = 1,… ,𝑀}
OUTPUT: Low dimensional representation of the input tensor i.e output       

{𝛶# 	∈ 	ℝ5(×5*×⋯×5,,𝑚 = 1,… ,𝑀}
Step 1: Center the input samples;

𝜒̅ = 	
1
𝑀	7 𝜒#

8

#9:

Step 2: Calculate the Eigen decomposition of mode-n total scatter matrix in full projection using; 

Φ < ∗ = 	 7 X?#(<)	. 	X?#(<)C
8

#9:

Step 3: Set the projection matrix U?(<) to consist of Eigen vectors corresponding to the most significant 𝑃<
Eigen values, where n=1,2…..N

Step 4: Calculate					{𝛶F# = 	𝜒G#	×:	U? : H×I	U? I H …×J	U? < K,𝑚 = 1,… ,𝑀}

ΨMN = 	 7 ||𝛶F#

8

#9:

||PI



Step 5: For local optimization, iterative process is carried as follows
For k=1,2…,K

For n=1,2,…,N

Set the projection matrices U?(<) to consist of Eigen vectors corresponding to the largest 
eigen values where, n=1,2…..N 

Calculate {Y?R	,m = 1,… ,M}	 and ΨUV	
If,                                  

ΨUV	 −	ΨUVX(	 < 	𝜂

break

else 
Repeat step 5.

Step 6: The feature tensor after projection is obtained as

𝛶# = 	𝜒#	×:	U? : H×I	U? I H …×J	U? J H,𝑚 = 1,… ,𝑀

The feature tensor of dimensions less than that of the original tensor is obtained.



MULTIWAY CLASSIFICATION
• Multiway or Multiclass classification is the problem of classifying instances

into one of the more than two classes.
• Some classification algorithms are binary in nature. However, they can be

turned into multiway classifiers by the following strategies;
1. One Vs Rest:

It involves training a single classifier per class, with the samples of that
class as positive samples and all other samples as negatives.

2. One Vs One:
In this, one trains K (K − 1) / 2 binary classifiers for a K-way multiclass
problem. Each receives the samples of a pair of classes from the original
training set, and must learn to distinguish these two classes.



•Support Vector Machines (SVM) are supervised learning models with associated
learning algorithms that analyze data used for classification.

•Given a set of training examples, each marked for belonging to one of two
categories, an SVM training algorithm builds a model that assigns new examples
into one category or the other, making it a binary classifier.

•However SVM can be modified to carry out Multiway classification.

SUPPORT VECTOR MACHINE



SUPPORT VECTOR MACHINE

	

wx+b=1 
wx+b=0 
wx’+b=-1 

• The SVM algorithm constructs an
hyperplane that separates the 2 different
classes in the case of binary classification.

• For a linear SVM classification, the two
classes(output) are labeled as Y=+1 and
Y=-1 such that;

Yi(wi x+ b) ≥ 1, for any ith vector point

• It must be true for all the data points, where
x represent vector points, w and b
represents weight of the vector point and a
constant.

Fig. 8: Representation of Hyper planes. 



SUPPORT VECTOR MACHINE
KERNEL TRICK:

If data is linear, a separating hyper plane may be used to divide the data.
However it is often the case that the data is far from linear and the datasets are
inseparable. To allow for this kernels are used to non-linearly map the input data to
a high-dimensional space. The new mapping is then linearly separable.

Fig. 9: Why use kernels?



PCA Vs MPCA
• First phase of the experiment involved the comparison of the performance of the

dimensionality reduction methods, PCA and MPCA.
• For this, A sample Hyperspectral image of a landscape was obtained from

Stanford Center for Image Systems Engineering (SCIEN), taken across 148
different wavelengths, ranging from 400nm to 950nm.

Fig. 10: RGB rendition of the Hyperspectral image.



PCA Vs MPCA - RESULTS

 
 

 (d) 
	Fig. 11: Row (a) contains colour scaled versions of the original hyperspectral image at 5 wavelengths, namely;
414.7243nm, 538.6450nm, 684.4339nm, 848.4465nm, 950.4988nm. Row (b) contains the corresponding
colour scaled versions of the reconstructed hyperspectral image obtained after applying PCA. Row (c)
contains the colour scaled versions of the reconstructed hyperspectral image obtained after applying MPCA.
(d) shows the colorbar used.



PCA Vs MPCA – RESULTS (Contd…)

Table 1: Values of SNR (in dB) and Relative error (%) for different amounts of variation 
kept in each mode while applying MPCA.

Amount of variation 
kept in each mode

95% 97% 99%

SNR(dB) 20.2031 22.2045 26.5725

Size of Feature tensor 13 x 10 x 148 27 x 23 x 148 79 x 72 x 148

Relative error (%) 15.1750 11.9983 7.3370



PCA Vs MPCA – RESULTS (Contd…)

Table 2: Computational time for MPCA and PCA with similar SNR performed using Intel 
i7-4500U processor @ 1.80 GHz 2.40 GHz.

Algorithm
Computational time

SNR=22Db SNR=27dB

MPCA 13.936887s 15.390155s

PCA 14.257096s 15.657825s
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DATASET DESCRIPTION
● The Indian pines dataset was gathered by Airborne Visible/infrared Imaging

Spectrometer (AVIRIS) developed by NASA.
● It is a scene of 145 x 145 pixels with 220 bands acquired over Indiana’s

Indian pine in June 1992.
● The scene comprises of several forests and agriculture fields with 16 classes

as shown in Fig. 12.

Fig. 12: A sample band of the Hyperspectral image, ground truth and legend.



The number of pixels(samples)/wavelength band for each class is as shown in Table 3;

Sl. No. Class
Samples 

(Pixels)

1 Alfalfa 46

2 Corn-notill 1428

3 Corn – mintill 830

4 Corn 237

5 Grass – Pasture 483

6 Grass – trees 730

7 Grass – pasture – mowed 28

8 Hay – windrowed 478

9 Oats 20

10 Soybean – notill 972

11 Soybean – mintill 2455

12 Soybean – clean 593

13 Wheat 205

14 Woods 1265

15 Buildings – Grass – Trees – Drives 386

16 Stone – Steel – Towers 93

Table 3: Number of samples (pixels)/class



From Table 3 it can be seen that the classes 1, 4,7,9,13,15 and 16 have a small number of samples which is not
sufficient for providing both training and test samples. Thus we don’t consider these classes for classification.
So we consider only 9 classes in the HSI for multiclass classification. The number of samples taken per class for
training and testing are tabulated in Table 4.

Class
Training 
Samples

Test Samples

Corn – no till 720 708
Corn – min till 430 400
Grass/Pasture 250 233
Grass/Trees 370 360
Hay – windrowed 235 243
Soybean – no till 485 487
Soybean – min till 1245 1210
Soybean – clean till 300 293
Woods 640 625

Table 4: Number of Training and Test Samples for each class



SIMULATION RESULTS

 
 : Hay-windrowed 

                 : Corn-notill 
Fig 13: Corn-notill Vs Hay-windrowed 

 
 : Woods 

                                            : Soybean-mintill 
Fig 14: Soybean-mintill Vs Woods 

	

One Vs One Classification considering two classes at a time using the spectral 
magnitude and spectral first derivative features is shown in Fig. 13 and Fig. 14.



Fig. 15 shows all the 9 classes after all the one vs one classifications are performed
using spectral magnitude and spectral first derivative features..

Fig. 15: Complete classification of the input HSI using non-tensorial Feature extraction. 



Fig. 16 shows all the 9 classes after all the one vs one classifications are performed
using SVM on the feature vector obtained after applying PCA.

Fig. 16: Classification of the input HSI after applying PCA on the feature vector.



Fig. 17 shows the complete classification into 9 classes by using SVM after MPCA
based feature extraction.

Fig. 17: Classification of the input HSI using tensor - based (MPCA) feature extraction.



Feature vector

Spectral 
magnitude + 
Spectral First 

Derivative

PCA MPCA

Accuracy (%) 99.63 86.94 94.44

Table 5 shows the accuracy (%) of the classification when the different methods of
feature extraction are used.

Table 5: Accuracy in different cases.
• It can be seen that Spectral Magnitude and Spectral First Derivative features when

used directly yields the highest accuracy.
• But the size of the feature vector is very high in this case.
• The size is considerably reduced in the case of PCA and MPCA based feature

extraction.
• Out of the two the tensor-based (MPCA) method is found to perform better than the

non-tensorial (PCA) method of feature extraction.



CONCLUSION
• The input Hyperspectral image of size 145 x 145 pixels with 220 bands acquired

over Indiana’s Indian Pines gathered using AVIRIS (Airborne Visible/infrared
Imaging Spectrometer) was represented as a tensor. Then tensor decomposition was
done using PCA and MPCA. After which, the feature vectors were extracted and
were classified using Support Vector Machines (SVM). It was observed that MPCA
is marginally faster. The size of the feature tensor and the relative error depended
upon the number of pixels preserved.

• Various combinations of tensor decomposition techniques and feature extraction
techniques were used to measure the classifier accuracy. It is found that the tensorial
method of feature extraction combined with linear SVM is more efficient than the
PCA based feature extraction and polynomial-kernel based non-linear SVM. Also,
the effect of an additional principal component was found.



FUTURE WORK

• This project can be extended by introducing an unsupervised learning algorithm
which does not require existing classified datasets (Ground truth) to train the
classifier.

• The new algorithm should classify the desired Hyperspectral image by utilizing the
underlying information in the image.
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